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Abstract
We use a particular fractional generalization of the ordinary differential
equations that we apply to the Riccati equation of constant coefficients. By
this means the latter is transformed into a modified Riccati equation with
the free term expressed as a power of the independent variable which is of
the same order as the order of the applied fractional derivative. We provide the
solutions of the modified equation and employ the results for the case of the
cosmological Riccati equation of FRW barotropic cosmologies that has been
recently introduced by Faraoni.

PACS numbers: 02.30.Hq, 04.20.Jb

1. Introduction

Fractional calculus is a generalization of the ordinary differential and integral calculus [1].
The main point is how to think about the derivative of order r, where r is an arbitrary real
or complex number. In 1695, L’Hôpital was the first to ask in a letter to Leibnitz on the
possibility of performing calculations by means of a fractional derivative of order r = 1

2 .
Leibnitz answered that the question looked a paradox to him but he predicted that in the future
useful consequences might occur. In 1697, Leibnitz referring to the infinite product of Wallis
for π/2 used the notation d1/2y and surmised that fractional calculus could be used to get the
same result.

In 1819 the first mention of derivatives of arbitrary order occurred in a published text.
The French mathematician Lacroix published 700 pages on differential calculus, where one
can find less than two pages dedicated to the fractional topic, which seems to be based on a
result of Euler dated 1730. He started with

y = xn (1)
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where n is an integer and wrote the mth derivative in the form

dmy

dxm
= n!

(n − m)!
xn−m. (2)

Next, Lacroix changed the factorial using the �(x) function (introduced by Legendre). n was
changed from an integer to a real number, n → a, and m was chosen to be m = 1

2 ; thus

d1/2y

dx1/2
= �(a + 1)

�
(
a + 1

2

)xa− 1
2 . (3)

In this way, he expressed the derivative of order one half by an arbitrary power of x. A simple
example given by Lacroix refers to the case y = x

d1/2x

dx1/2
= 2

√
x√
π

. (4)

Over the years, great mathematicians such as Euler, Fourier, Abel and others have done some
work on fractional calculus that nevertheless remained a sort of curiosity.

The modern epoch started in 1974, when a consistent formalism of fractional calculus was
developed by Oldham and Spanier [2]. It has been found that Lacroix’s result (4) coincides
with that obtained by means of the present definition of the Riemann–Liouville fractional
derivative.

2. Basic definitions of the fractional calculus

(i) One can define the fractional integral of order α > 0 as follows:

x0D
−α
x f (x) = 1

�(α)

∫ x

x0

f (x ′) dx ′

(x − x ′)1−α
. (5)

In particular, for x0 = 0 one usually writes

D−α
x f (x) = 1

�(α)

∫ x

0

f (x ′) dx ′

(x − x ′)1−α
. (6)

(ii) For β � 0 one can define the fractional derivative of order β in the following way:

dβf (x)

dxβ
= Dβ

x f (x) = dn

dxn
D−(n−β)

x f (x) = dn

dxn

1

�(n − β)

∫ x

0

f (x ′) dx ′

(x − x ′)1−n+β
(7)

where n � β. Thus the β fractional derivative is defined as an ordinary derivative of order
n of the fractional integral of order n − β.

(iii) The chain rule has the form

dβ

dxβ
f (g(x)) =

∞∑
k=0

(
β

k

)
�

(
dβ−k

dxβ−k
1

)
dk

dxk
f (g(x)) (8)

where k ∈ N and
(

β

k

)
�

are the coefficients of the generalized binomial(
β

k

)
�

= �(1 + β)

�(1 + k)�(1 − k + β)
. (9)

(iv) Leibnitz’s rule for the derivative of the product has the form

dβ

dxβ
f (x)g(x) =

∞∑
k=0

(
β

k

)
�

dk

dxk
f (x)

dβ−k

dxβ−k
g(x) (10)

where k ∈ N .
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3. Ordinary differential equations from the fractional calculus

Let L̂ be a differential operator and let its action L̂[u(x)] = g(x) be used to define a differential
equation. We generalize L̂ to the fractional calculus by means of the fractional derivative of
order β = 1 − δ, δ ∈ (0, 1), writing the following fractional differential equation:

D1−δ
x L̂[u(x)] = g(x). (11)

When δ = 1, then D1−δ
x L̂[u(x)] = L̂[u(x)].

One can obtain a solution of (11) by applying the fractional integral of the same order to
the left

D−(1−δ)
x

{
D1−δ

x L̂[u(x)]
} = D−(1−δ)

x [g(x)] (12)

L̂[u(x)] = D−(1−δ)
x [g(x)] (13)

L̂[u(x)] = Dδ−1
x [g(x)]. (14)

For example: L̂ = d
dx

+ p(x) implies

L̂[u(x)] = d

dx
u(x) + p(x)u(x) (15)

d

dx
u(x) + p(x)u(x) = Dδ−1

x [g(x)] (16)

then

u(x) = 1

µ(x)

[∫ x

µ(s)Dδ−1
s g(s) ds + c

]
(17)

where

µ(x) = exp

(∫ x

p(s) ds

)
. (18)

Equations (17) and (18) provide the solution to the linear generalized equation of the first
order. This is not the unique possible fractional generalization [3, 4]. One could have taken
D1−δ

x u(x) + p(x)u(x) = g(x) or some other procedure. However, the present approach leads
to analytical results in applications.

4. Application to the Riccati equation of constant coefficients

The ordinary Riccati equation of constant coefficients is du(x)

dx
+ au2(x) = b, where a and b are

constants. Thus the operator of the Riccati type is L̂R = d
dx

+ au(x) acting always in the space

of functions u(x), i.e., L̂Ru(x) = du(x)

dx
+ au2(x) = g(x). Fractional considerations related to

this operator can be found in the work of Metzler et al [4]. The fractional Riccati equation
according to the scheme proposed in the previous section is

D1−δ
x

[
d

dx
+ au(x)

]
u(x) = b (19)

or

du(x)

dx
+ au2(x) = D−(1−δ)

x b. (20)
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The right-hand side can be written as

b
[
D−(1−δ)

x 1
] = b

�(1 − δ)

∫ x

0

dt

(x − t)δ
= bx1−δ

�(1 − δ)(1 − δ)
= bx1−δ

�(2 − δ)
. (21)

Thus, solving the fractional Riccati equation is equivalent to solving the following type of
particular, ordinary Riccati equation that we call the δ-modified Riccati equation

du(x)

dx
+ a[u(x)]2 = bx1−δ

�(2 − δ)
. (22)

4.1. Solution of the δ-modified Riccati equation

In order to solve (22) we use the transformation u = y ′/ay; u′ = [y ′′y − (y ′)2]/[ay2]. One
gets the associated linear second-order differential equation

d2y(x)

dx2
− ab

�(2 − δ)
x1−δy = 0. (23)

Multiplying by x2 leads to

x2 d2y(x)

dx2
− ab

�(2 − δ)
x3−δy = 0. (24)

The latter has solutions expressed in terms of Bessel functions. To see this we use the following
known result. The equation

x2y ′′ + (1 − 2p)xy ′ + [q2r2x2r + (p2 − n2r2)]y = 0 (25)

has for real q the linear independent solutions

y1 = xpJn(qxr) (26)

y2 = xpYn(qxr) (27)

where Jn(x) and Yn(x) are the Bessel functions of the first and second type, respectively. We
shall also use the following properties of the Bessel functions:

J ′
n(x) = Jn−1(x) − n

x
Jn(x) (28)

J ′
n(x) = 1

2 [Jn−1(x) − Jn+1(x)] (29)

J ′
n(x) = n

x
Jn(x) − Jn+1(x). (30)

The same holds for Yn(x). Then, using (28) one gets

y ′
1 = y1

[
p − nr

x
+ qrxr−1 Jn−1(qxr)

Jn(qxr)

]
(31)

y ′
2 = y2

[
p − nr

x
+ qrxr−1 Yn−1(qxr)

Yn(qxr)

]
. (32)

On the other hand, using (30) one gets

y ′
1 = y1

[
p + nr

x
− qrxr−1 Jn+1(qxr)

Jn(qxr)

]
(33)
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y ′
2 = y2

[
p + nr

x
− qrxr−1 Yn+1(qxr)

Yn(qxr)

]
. (34)

In order to find the Riccati solutions we can identify the parameters from a comparison of (24)
and (25)

p = 1

2
q = 2

3 − δ

√
− ab

�(2 − δ)
r = 3 − δ

2
n = 1

3 − δ
. (35)

It is more convenient to work with equations (31) and (32) because p − nr = 0. Therefore,

u1(x) = y ′
1

ay1
= 1

a

[
qrxr−1 Jn−1(qxr)

Jn(qxr)

]
(36)

u2(x) = y ′
2

ay2
= 1

a

[
qrxr−1 Yn−1(qxr)

Yn(qxr)

]
(37)

and thus

u1(x) = 1

a




√
ab

�(2 − δ)
x

1−δ
2

J δ−2
3−δ

(
2

3−δ

√
ab

�(2−δ)
x

3−δ
2

)
J 1

3−δ

(
2

3−δ

√
ab

|�(2−δ)|x
3−δ

2
)

 (38)

u2(x) = 1

a




√
ab

�(2 − δ)
x

1−δ
2

Y δ−2
3−δ

(
2

3−δ

√
ab

�(2−δ)
x

3−δ
2

)
Y 1

3−δ

(
2

3−δ

√
ab

�(2−δ)
x

3−δ
2

)

 . (39)

For positive b one gets an imaginary q parameter that turns the J and Y functions into the I
and K Bessel functions, respectively. If we consider normal (nondivergent) initial conditions
as a criterion for physical solutions then this selects the expressions containing the J and I
functions.

5. Application to FRW barotropic cosmology

Recently Faraoni [5] showed that the equations describing the FRW barotropic cosmologies
can be combined in a simple Riccati equation of constant coefficients. In addition, Rosu
[6] discussed in some detail the cosmological Riccati solutions and used nonrelativistic
supersymmetry (generalized Darboux transformations) to get cosmological Riccati equations
of nonconstant coefficients. Faraoni’s Riccati equation is

dH

dη
+ cH 2 = −kc (40)

where H(η) = dR/dη

R
is the Hubble parameter (R is the scale factor of the universe) and

η is the conformal time, c is related to the adiabatic index of the cosmological fluid under
consideration, c = 3

2γ − 1. k = 0,−1, 1 are the curvature indices of the FRW universes,
plane, open and closed, respectively.

Applying the results of the previous section, for a = c, b = −kc, we get the following
solutions for the δ- modified Hubble parameter:



1092 H C Rosu et al

Figure 1. Fractional Hubble parameter calculated according to formula (41).

Figure 2. Fractional Hubble parameter calculated according to formula (43).

(i) For k = 1 (the closed case), the q parameter is real and we get

H
(+)

1 (η; δ) =
√

1

�(2 − δ)
η

1−δ
2

J δ−2
3−δ

(
2c

3−δ

√
1

�(2−δ)
η

3−δ
2

)
J 1

3−δ

(
2c

3−δ

√
1

�(2−δ)
η

3−δ
2

) (41)

H
(+)
2 (η; δ) =

√
1

�(2 − δ)
η

1−δ
2

Y δ−2
3−δ

(
2c

3−δ

√
1

�(2−δ)
η

3−δ
2

)
Y 1

3−δ

(
2c

3−δ

√
1

�(2−δ)
η

3−δ
2

) . (42)

(ii) For k = −1 (the open case), the q parameter is imaginary and we get

H
(−)

1 (η; δ) =
√

1

�(2 − δ)
η

1−δ
2

I δ−2
3−δ

(
2c

3−δ

√
1

�(2−δ)
η

3−δ
2

)
I 1

3−δ

(
2c

3−δ

√
1

�(2−δ)
η

3−δ
2

) (43)
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H
(−)

2 (η; δ) =
√

1

�(2 − δ)
η

1−δ
2

Kδ−2
3−δ

(
2c

3−δ

√
1

�(2−δ)
η

3−δ
2

)
K 1

3−δ

(
2c

3−δ

√
1

�(2−δ)
η

3−δ
2

) . (44)

The case k = 0 corresponds to b = 0, therefore it does not enter the present generalization in
the sense that there is no change in the Riccati equation.

Formulae (41)–(44) can be considered a generalization of the results obtained by Faraoni.
Nondivergent initial data correspond to (41) and (43). Three-dimensional plots of these
formulae are given in figures 1 and 2. For δ = 1 we get H(+)

1 (η; δ) = J−1/2/J+1/2 = cotan(cη)

and H
(−)

1 (η; δ) = I−1/2/I+1/2 = cotanh(cη) that correspond to the ordinary calculus. We
mention that there are various works in the literature on the issue of geometric and physical
interpretation of the fractional derivative and fractional integral, see, e.g., Podlubny [7]. In
the cosmological case, the new parameter δ is introduced in the cosmological evolution of the
Hubble parameter as a consequence of applying a special fractional calculus to cosmological
realms. In principle, as in statistical mechanics [8], fractional calculus can be considered as
the macroscopic manifestation of randomness. This has been argued to be so [8] when there
is no definite timescale separation between the macroscopic and the microscopic levels of
description and this could be the case of cosmology itself.
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